THE RHOMBIC 132 - HEDRON

Figure 1.
This nice piece has 132 rhombic faces. There are 3 kinds of faces: the first kind is the pink and orange face, it has angle $=41.88204094$ degrees $=\varphi_{1}$. $\cos \varphi_{1}=\frac{7+4 \sqrt{2}}{17}$. There are 48 pieces from this face.
The second kind of faces is the yellow face, it has angle $=82.66100921$ degrees $=\varphi_{2}$.
$\cos \varphi_{2}=\frac{5-2 \sqrt{2}}{17}$. There are 48 pieces from this face.
The third kind of the faces is the green and blue faces.
It has angle $=119.2776132$ degrees $=\varphi_{3}$. $\cos \varphi_{3}=\frac{3-8 \sqrt{2}}{17}$. There are 36 pieces from this face, 12 of blue, 24 of green.

The green corners make the corners of a cube, and the blue faces make the edges of the cube. The pink, orange and yellow faces make the face of the cube.

The polyhedron has $2 \cdot 132=264$ edges, 134 corners and 132 faces.

There are 6 of 8 -edged corners, $6 \cdot 8+8=56$ of 3 -edged corners, $6 \cdot 8=48$ of 4 -edged corners and $12 \cdot 2=24$ of 5 -edged corners.
$6+56+48+24=134$ corners .

How to construct this polyhedron?
First take a cube with edge length $=1$. Draw on its face the octogons with edge length $=2 \mathrm{~h}=\sqrt{2}-1=0.414213562$. The length of the blue line is b . See Fig. 1. Make the two blue lines to be parallel! See Fig. 3.
By the Fig. 4., $\tan 22,5=2 \mathrm{~h}$, so $\mathrm{h}=\frac{1}{2} \tan 22,5^{\circ}=\frac{\sqrt{2}-1}{2}=0.207106781$.

Figure 2.

Figure 3.

Figure 4.

Figure 5.
$\cos 22.5^{\circ}=\frac{1}{2 b}$, so $b=\frac{1}{2 \cos 22.5^{\circ}}=0.5411961$.
On the Fig. 5. we can see the angle φ_{1}.

Figure 6.

Figure 7.
By the Fig. 6. : $\tan \frac{\varphi_{1}}{2}=\frac{h}{b}$, and by the Fig. 4. : $\frac{h}{b}=\sin 22.5^{\circ}$!
So $\varphi_{1}=2 \arctan \left(\sin 22.5^{\circ}\right)=41.88204094^{\circ}$
$\cos \varphi_{1}=\cos ^{2} \frac{\varphi_{1}}{2}-\sin ^{2} \frac{\varphi_{1}}{2}=\frac{b^{2}}{a^{2}}-\frac{h^{2}}{a^{2}}=\frac{h^{2}+0.25}{a^{2}}-\frac{h^{2}}{a^{2}}=\frac{0.25}{a^{2}}$
$\mathrm{a}^{2}=\mathrm{h}^{2}+\mathrm{b}^{2}=\mathrm{h}^{2}+\mathrm{h}^{2}+0.25=2\left(\frac{\sqrt{2}-1}{2}\right)^{2}+0.25=\frac{6-4 \sqrt{2}+1}{4}=\frac{7-4 \sqrt{2}}{4}$
$\cos \varphi_{1}=\frac{0.25}{\mathrm{a}^{2}}=\frac{4 \cdot 0.25}{7-4 \sqrt{2}}=\frac{1 \cdot(7+4 \sqrt{2})}{49-16 \cdot 2}=\frac{7+4 \sqrt{2}}{17}$.
On the Fig. 7, the length of the pink lines are a.

Figure 8.
Figure 9.

The angle φ_{1} is between the lines 1 and 2 .
The angle φ_{2} is between the lines 1 and 3 .
The angle φ_{3} is between the lines 1 and 4 .
The angle φ_{4} is between the lines 1 and 5 .
$\sin \frac{\varphi_{1}}{2}=\frac{\mathrm{h}}{\mathrm{a}}, \sin \frac{\varphi_{2}}{2}=\frac{\mathrm{b}}{\sqrt{2} \mathrm{a}}, \sin \frac{\varphi_{3}}{2}=\frac{1}{2 \mathrm{a}}$, and $\sin \frac{\varphi_{4}}{2}=\frac{\mathrm{b}}{\mathrm{a}}=\cos \frac{\varphi_{1}}{2}$. So $\varphi_{4}=180-\varphi_{1}!$
$\mathrm{a}^{2}=\mathrm{h}^{2}+\mathrm{b}^{2}=\mathrm{h}^{2}+\mathrm{h}^{2}+\frac{1}{4}=\frac{2(\sqrt{2}-1)^{2}+1}{4}=\frac{2(3-2 \sqrt{2})+1}{4}=\frac{7-4 \sqrt{2}}{4}$
$c_{1}=\cos \varphi_{1}=1-2 \frac{h^{2}}{a^{2}}=\frac{a^{2}-2 h^{2}}{a^{2}}=\frac{1}{4 a^{2}}=\frac{1}{7-4 \sqrt{2}}=\frac{7+4 \sqrt{2}}{49-16 \cdot 2}=\frac{7+4 \sqrt{2}}{17}$
$c_{2}=\cos \varphi_{2}=1-2 \frac{b^{2}}{2 a^{2}}=\frac{a^{2}-b^{2}}{a^{2}}=\frac{h^{2}}{a^{2}}=\frac{3-2 \sqrt{2}}{7-4 \sqrt{2}}=\frac{(3-2 \sqrt{2})(7+4 \sqrt{2})}{17}=\frac{5-2 \sqrt{2}}{17}$
$c_{3}=\cos \varphi_{3}=1-2 \frac{1}{4 \mathrm{a}^{2}}=1-\frac{2}{7-4 \sqrt{2}}=\frac{5-4 \sqrt{2}}{7-4 \sqrt{2}}=\frac{(5-4 \sqrt{2})(7+4 \sqrt{2})}{17}=\frac{3-8 \sqrt{2}}{17}$
$2 \mathrm{c}_{1}+\mathrm{c}_{3}=1$
$\mathrm{c}_{1}+2 \mathrm{c}_{2}=1$
$\mathrm{c}_{2}+\mathrm{s}_{3}=1 \quad\left(\mathrm{~s}_{3}=\sin \varphi_{3}=\sqrt{1-\mathrm{c}_{3}^{2}}=\frac{12+2 \sqrt{2}}{17}\right)$
$\mathrm{c}_{1}+\mathrm{c}_{2}=\mathrm{s}_{3}$
$\mathrm{c}_{3}+4 \mathrm{~s}_{3}=3$
$\mathrm{s}_{3}-4 \mathrm{c}_{3}=2 \sqrt{2}$
$c_{2}+4 c_{3}=1-2 \sqrt{2}$

These are the properties of the Rhombic 132 - Hedron.
Miklos Kristof, 05.09.2005 kristofmiki@freemail.hu

