Fourteen per hundred arc-seconds
The perihelion rotation of Mercury is 43 arc-seconds per century, by the Relativity Theory of Einstein. His formula is : 
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, where m is the mass of the sun, G is the constant of gravitation, c is the velocity of light, a is the half great axis of the elliptic orbit of Mercury, and e is excentricity.

Dr. Károly Novobátzky writes in page 165 of  his ’Theory of Relativity’:
S. Newcomb determined 41.24’’ as real value at the end of the 19th century. This value of  41.24’’ determined was doubted it was correct. In 1939, all Mercury observations between 1765-1937 were re-processed. It was 10,482 observations, all together. This huge work was done by Naval Observatory, Washington, USA, for 4 years. It resulted in a value of  42.84 arc-seconds per century perihelion rotation. Now the question is that how much is the exact value required by the Theory of Relativity? It is 42.91 arc-seconds by Novobátzky. If we check the first hit in Wikipedia for mercury perihelion it says 42.98 arc-seconds. Let’s take it as an accurate one. The difference is just 0.14 arc-seconds.
This is an accuracy of 3.2 per thousand! A brilliant verification of Einstein’s theory! It turned out from the book of  V. Vizgin, titled The formation of modern gravitation theory, that there were a lot of competing gravitation theories at that time which all predicted different values for the rotation of perihelion. History proved Einstein. Question may rise if this 0.14’’ is a measuring error, as well, or an observation inaccuracy, or there is a deeper reason behind it?
In the followings, this question will be explored.
I prove that it was not a measuring error, but a manifestation of a new phenomenon, which proves the theory of ether, the flexible model of ether.

The Spring-Mass (SM) model of ether

According to my theory, the outer space is filled up with a flexible medium, a gas, whose vibrations and flows build up the whole Universe, from stones till stars. A flexible model can be applied to this gas, so let it be, in the simpliest case, a chain of one dimension, made up of springs and masses. The mass is m0, while the spring constant is k0.  Let’s apply the force-formula of Newton to this model:
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Let’s seak the solution in the form of 
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, where k is the number of waves,  is the frequency of rotation. 
Take care, number of waves k shouldn’t be mixed up with spring constant k0!

Then  
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It is possible to simplify with xn. Then we get:
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Later it will be seen that x0 is very small, thus approximation of sin(x) 
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x can be applied:
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, that is 
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,  that makes 
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where nomination 
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 is introduced.

As it is visible, this is exactly the velocity of light.

This dispersion relation is specific to photons with zero rest mass.

In case of particles with not zero mass there is an l0 spring as well, which is specific to the mass of particle, and not the constant of ether. Here we have the descriptive equation of l0 spring model:
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Dispersion relation of it is:  
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Let’s introduce now nomination 
[image: image15.wmf]22

0

0

l

c

m

=×k

, where 
[image: image16.wmf]mc

×

k=

h

. Dispersion relation becomes with this:
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  be the energy, and 
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 the impulse!


[image: image20.wmf]222

Ecpmc

=×+×

, and this is exactly the energy expression known from the Theory of Relativity!

What does it mean? That the waves, moving in the SM model, follow, in all ways, the principles of the Special Theory of Relativity! We know from quantum physics that every material particle is a wave, as well. Then, the Michelson Morley interferometer is composed of the waves of ether and suffers relativistic distortion during its move. The arm, in direction of the move, will get shorter in a ratio of 
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 , and this exactly compensates the effect what we would like to observe! This is why we don’t see interference pattern. Therefore, ether does exist, it is a flexible medium, and the Theory of Relativity is true, though, and true, even because of that! 
The Stephen Hawking radiation

By Stephen Hawking, black holes emit temperature radiation.

The temperature of the surface of event horizon is T, where it is true that: 
[image: image22.wmf]3

B

c

kT

8Gm

×

×=

×p××

h

,

and where m is the mass of the black hole.

Black hole sinks ether with a speed of 
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Event horizon is the place where v = c.

Therefore, the radius of event horizon is 
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Acceleration of ether at the event horizon is 
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By inserting it into Stephen Hawking’s formula, it will result in: 
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The electric field of electron is nothing else, but the acceleration of the electric ether.
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there. Let’s insert it into the formula: 
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Here comes the essence: let’s suppose that the whole energy of electron is this temperature radiation!

Which is 
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! The question is, what will come out for r?
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Let’s suppose now, that the same context applies to the ether atom, which is 
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, determined now! But there is a little difference: the 
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 has an 1/4  multiplicator, because the electron has a
toroidal topology, while the ether atom has a spherical. Then 
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, where xp is the Planck-length  = 
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Determination of the constants of SM model

With the help of a few elementary contexts the constants of ether can be determined.
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 is the Schwarzschild radius of the ether-atom, 
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we can express m0: 
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 .

mp is the Planck-mass, kp is the Planck spring constant, and mel is the so-called electric mass.

Now, ether constants can be counted, which results in:
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From these we have:
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There was no mention about 
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 spring, yet. This is different from particles to particles. In fact, 
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 spring is a model approach, the real reason of mass is that ether swallowed by the particle generates a potential wall which closes the light. Closed light gets mass. The simpliest model of it is, when mass circulates on a round-shape  orbit with  angular velocity. Its energy then is 
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The Linrutshira model
Linrut = Linear Spring – Mass model
SHIRA = Szienta Holla Inla Ríta Amma = Entire Knowledge Inherent In The Original Devine Order

This is a summation method, where a selected mass point is observed for with what forces are all the others affecting it. We presume of these forces that they are a kind of relativistic gravitational attraction force. It is needed, because, since 
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Relativistic gravitational attraction force: 
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Because of 
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This force must be summarized for all mass points.

Let’s presume that all ether atoms are in calm, except the zero one.

Then the places of ether atoms are:
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Ether atom zero will move right, to a small 
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Then the force affecting ether atom zero is:
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Let’s suppose now that d is very small, thus d2 in denominator is negligible. So we get:
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***It was intentional to write 
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 instead of 
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 and k1  instead of k0 , soon, it will be seen why.
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This equation can be solved by the help of the programme Maple 7. It’s solution is: 
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Estimation, by this, of 
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What is the reason it is not exactly accurate? Well, it is because SM model is, in reality, not linear, 
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The NonLinrutShira model

This is the expression of anharmonic force:
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Derivation is a linear operation, thus function 
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 can be exhibited in series.

.
Let’s use A = 
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, then, let’s have a look at it’s Taylor series.
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Let’s summarize it now:
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Summaries can be analysed by programme Maple 7:
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Solution of the exact force-formula, determination of d
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, this is the equation to be solved if 
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The solution is:  d = 0.03335695

The question is, whether it falls onto the linear section?

Here we have the graphic depiction of force-formula: 

> plot(sum((n-a)*x/((n-a)^2-x^2)^2,n=1..200),x=-0.5..0.5);
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> # Under x = 0.05 it is absolutely linear! 
> 

> plot(sum((n-a)*x/((n-a)^2-x^2)^2,n=1..200),x=-0.05..0.05);
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> # This is beautifully linear!
Therefore, d falls onto the linear section. Non-linearity causes just a little correction.

Calculation of 0 , by the help of d
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.  In numbers:
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After calculation:   [image: image106.wmf] := 
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We can see that it is a bit bigger than 4.67011383, therefore, something is not exactly accurate.

But, an error of this size is acceptable.

Velocity of light’s dependence of density

If density of ether is  
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If, let’s say 
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Then, if density changes in the way 
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In consequence, in Linrutshira model, velocity of light doesn’t depend on density! 

However, in Nonlinrutshira model, the situation is quite different.

I assume, d is inversely proportional with density: the greater density, the smaller distances.
. 

Density of flowing ether
Ether is a flexible medium, a gas, which, if its volume is compressed into the half, then its pressure doubles. The speed of waves in such a medium is c, which is, in case of ether, exactly the speed of light, c = 299792458 m/s.
There is relation between pressure and density: p = c2  . Therefore, F =  c2 grad 
Now, we can write the Newtonian formula for the flowing ether: 
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This will be solved, in case of ether flowing in spherical symmetry.

We will check now the case of constant in time.

As it is known, still mass point sinks ether, exactly this way.
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Component  v×rot v is zero, in this case, that’s why it is negligible.

In case of stacionary flow, constant in time 
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, thus, finally, we have this:
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Thus, the Newtonian equation is   
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Therefore the equation is:   
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Now, presuming that flow is not constant, and
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Our statement is that the solution of this equation is: 
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 is, really the solution of the equation!

In Schwarzschild metrics 
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Accordingly, in our formula, d is to be replaced by component 
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Dependency of the velocity of light in alterating density of ether
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It can be seen that velocity of light increases, therefore refractive index decreases.

Then, the Einsteinian 42.98’’, which comes from the increase of refractive index, will decrease!
Let’s see its extent.

In Schwarzschild metrics, velocity of light decreases the way 
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Rotation of perihelion, compared to this, is 
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> lambda0:=4.67011383;
[image: image155.wmf] := 

l0

4.67011383


> a1:=sum(1/(n-1/lambda0)^5,n=1..1000);
[image: image156.wmf] := 

a1

3.399107836


> a2:=sum(1/(n-1/lambda0)^7,n=1..1000);
[image: image157.wmf] := 

a2

5.419905355


> d:=0.03335695;
[image: image158.wmf] := 

d

.03335695


> delta:=1/lambda0*(4*a1*d^2+12*a2*d^4);
[image: image159.wmf] := 

d

.003256683580


> deltaphi:=42.98;
[image: image160.wmf] := 

deltaphi

42.98


> result:=deltaphi*delta;
[image: image161.wmf] := 

result

.139972260


> Error:=(0.14-result)/0.14;
[image: image162.wmf] := 

Error

.0001981407


> einsteinerror:=0.14/deltaphi;
[image: image163.wmf] := 

einsteinerror

.003257328990


> # Einstein, therefore, made an error of 3.2 per thousand.
> # I have multiplied it by another 0.2 per thousand!

> # Therefore, my accuracy is 0.64 ppm (part per million)!!!

One hundred years after Einstein, I am the first, who could tell something new from Mercury!!

And by this, I could indisputably prove the correctness of my ether theory! 
Miklós Kristóf     August, 11, 2011    46 Dózsa György út, 1076 Budapest, Hungary
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